Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Plastic pollution is a major environmental and health threat due to its widespread presence in ecosystems and food chains. Despite extensive research on microplastics, the detection of submicron plastics remains challenging due to their distinct physical and chemical properties and the limitations of current analytical methods. SERS has attracted significant attention in recent research as an ultra-sensitive approach for detecting nanoplastics compared to other spectroscopy techniques. In this paper, a stable, biodegradable, waste-free novel paper-based SERS substrate is developed for the rapid detection of submicron (200 nm) polystyrene (PS) particles via the controlled deposition of AuNPs onto filter paper using an atmospheric cold plasma jet printing process. The density of AuNPs increases with the number of printing passes, correlating with enhanced SERS results. The resulting SERS substrates are capable of quantifying a broad range of PS concentrations (1–500 μg mL⁻¹) using just 5 μL of analyte. The fabricated SERS substrate enables reliable quantification of PS in water, exhibiting a strong linear correlation (R² = 0.993) between SERS intensity and PS concentration, with a detection limit of 10 μg mL⁻¹ . These substrates demonstrate exceptional stability and reproducibility over a 10-week period, addressing key challenges associated with paper-based SERS substrates and making them suitable for long-term monitoring. Furthermore, analysis of tap water as a representative real-world sample demonstrates the practical applicability of the SERS substrate for environmental monitoring, revealing quantifiable levels of PS contamination.more » « lessFree, publicly-accessible full text available November 1, 2026
-
The soil microenvironment greatly influences a plant’s ability to absorb nutrients and germinate. Sensing these changes in soil medium is critical to understand plant nutrient requirements. Soil being dynamic represents changes in nutrient content, element mobility, texture, water-holding capacity, and microbiota which affects the nutrient levels. These minor changes affect the plant in early growth and development and studying these changes has always been challenging. Microfluidics provides a platform to study nutrient availability and exchange in small volumes of liquid or media resembling plant microenvironments. Here, we have developed a novel microfluidic chip-embedded molecular imprinted sensor for sensing nitrate and phosphate in the media. For data acquisition and recording we have implemented a potentiostat controlled via a microcontroller allowing data storage and transfer via a long-range radio module (LoRA). The microfluidic device’s functionality was validated by germination of the legume crimson red and recoding the nitrate and phosphate levels in media for 7 d. The MIP-based sensor measures nitrate and phosphate, in the range from 1 to 1000 mM. The accuracy of detection for nitrate and phosphate showed 99% and 95% respectively. The chip coupled with MIP based sensor for nutrient analysis serves as a platform technology for studying nitrate and phosphate nutrient exchange and interaction. This chip in the future can be implemented to study plant deficiencies, drought resistance, and plant immunity.more » « less
-
High testosterone is associated with increased physical performance in sports due to its stimulation with body-muscle ratio, lean mass (muscle and bone), and bone density. Several studies show athletes with better explosive strength and sprint running performances in football, have a higher basal level of testosterone. The results suggest a relationship between testosterone production and the development of fast-twitch muscle fibers, endurance training, lean mass, resistance training in athletes as well as motivation for competition. Thus, monitoring testosterone levels is gaining attention to evaluate athletic performance of one's physical performance in sport, fitness, and bodybuilding as well as prevent health risk factors for low levels of testosterone. There have been attempts using optical, electrical and biochemical sensors to monitor testosterone but are difficult to reproduce in large quantities and suffer from limitations of sensitivity, and detection limits. This can be addressed using Molecularly Imprinted Polymers (MIPs) in a point of care (POC) system. Molecularly Imprinted Polymers (MIPs) are a synthetic polymer with cavities in the polymer matrix serve as recognition sites for a specific template molecule, which are detected using electrochemical amperometry. In this paper, we have used MIPs in conjunction with cyclic voltammetry, to produce a viable, ultrasensitive electrochemical sensor for the detection of testosterone from a human sweat sample. This combination of MIPs and cyclic voltammetry allows for a simple, low-cost, mass-producible, and non-invasive method for detecting testosterone in human males. This method is extremely simple and cheap, allowing for consistent measurement of Testosterone levels in humans and allows for the detection of Testosterone in a POC. In our work, a Screen-printed carbon electrode (SPCE) using polypropylene fabric was used as the base working electrode in a three-electrode system. The screen-printing technique was implemented to layer a carbon paste over both sides of the fabric and was air-dried for one hour at 75⁰C. The SPCE was immersed into an acetate buffer solution that contains a 2.0mM monomer called o-phenylenediamine and with a 0.1mM testosterone template. Electropolymerization was carried out with cyclic voltammetry from a range of 0V to 1.0V, at a scan rate of 50 mV/s, a sensitivity (A/V) of 1e-5A, and for a total of 30 cycles. The set concentration tested was 100-1600 ng/ml of testosterone. The electrochemical characterization will have a potential sweep of -1.2 V to 1.2 V, a scan rate of 0.05 (V/s), a sensitivity (A/V) of 1e-5A, and a singular cycle. The wearable biosensor showed a detection range for testosterone from 100ng to 1600ng, electrochemical results also showed a clear and measurable result with an R-square value of 0.9417 which proves the accuracy of the developed sensor. Although this is not the complete saturation point and theoretically maximum limit of 28,842ng/ml can be achieved although this was not tested. The detectable lowest concentration of testosterone was found to be ~100ng/ml, and it was noted that lower than 100ng gives a weaker signal, In conclusion a novel electrochemical sensor based on a molecularly imprinted polymer used as the extended gate of a field effect transistor was developed for the ultrasensitive detection of sweat Testosterone. This sensing technology paves the way for the low cost, label-free, and point of care detection which can be used for evaluating ang monitoring athletic performance.more » « less
-
The use of plasma processes in nanomaterial synthesis is limited by a lack of understanding of the effects of plasma treatment on the morphology and other properties. Here, we studied the effects of atmospheric plasma treatment on the morphology and optical properties of Ag nanoparticles. The Ag nanoparticles were deposited on substrates by injecting an aerosol into flowing argon gas and then treated with a low-temperature atmospheric plasma jet. After plasma treatment, the mean Ag nanoparticle diameter reduced to an average of 5 nm, which was accompanied by a blue shift of ~70 nm in the peak of the surface plasmon resonance; these results are similar to those obtained by thermal treatment at elevated temperatures. The reduction in nanoparticle size is explained by the redox reaction that occurs on the nanoparticle surface, which is evident from the presence of AgO and Ag2O Raman peaks in the treated sample. The surface charge changed as a result of plasma treatment, as indicated by a large change in the zeta potential from +25.1 ± 4 mV for the untreated sample to −25.9 ± 6 mV after 15 min of plasma treatment. Surface-enhanced Raman spectroscopy of the plasma-treated films was carried out with the fluorescent dye Rhodamine 6 G, which showed a ~120-fold enhancement in the signal intensity relative to the untreated substrates. We, therefore, conclude that cold-plasma treatment modified the surface morphology of the Ag nanoparticles, thereby enhancing their optical properties. This technique could be applied to a wide range of nanoparticle systems used in biosensing applications.more » « less
-
Optical two-dimensional (2D) coherent spectroscopy excels in studying coupling and dynamics in complex systems. The dynamical information can be learned from lineshape analysis to extract the corresponding linewidth. However, it is usually challenging to fit a 2D spectrum, especially when the homogeneous and inhomogeneous linewidths are comparable. We implemented a machine learning algorithm to analyze 2D spectra to retrieve homogeneous and inhomogeneous linewidths. The algorithm was trained using simulated 2D spectra with known linewidth values. The trained algorithm can analyze both simulated (not used in training) and experimental spectra to extract the homogeneous and inhomogeneous linewidths. This approach can be potentially applied to 2D spectra with more sophisticated spectral features.more » « less
An official website of the United States government
